Dossier de demande d'autorisation environnementale #### 11.7 ANNEXE 7 - MODALITES DE MAINTENANCE SIEMENS GAMESA #### X MAINTENANCE PLAN AFTER 3 MONTHS FROM STARTUP #### 15 GENERATOR SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|----------| | 15.1 | Generator - Brush | Checking wear and seat of phase brushes | | | 15.2 | Generator - Brush | Checking wear and seat of ground brushes | | #### **20 BUILT-IN SYSTEMS** | | Subsystem /
Component | Task title | Comments | |------|----------------------------------|-----------------|----------| | 20.1 | Predictive Maintenance
System | Data collection | | #### 31 WIND TURBINE | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--|----------| | 31.1 | | Maintenance of structural and electrical bolted joints | | | SIEMENS Gamesa | MAINTENANCE PLAN | Code: DM037065-en | Rev: 02 | |------------------|------------------|-------------------|--------------| | | | Date: 16/01/2020 | Page 3 of 32 | | Title: | | • | • | | Wind turbine | | | | | Maintenance plan | | | | #### I MAINTENANCE PLAN EVERY 6 MONTHS NOTE: The maintenance tasks defined below are to be performed every 6 months. #### 01 YAW SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|---| | 01.1 | Yaw system | Noise inspection of the yaw system | In models with automatic lubrication | | 01.2 | Ring | Lubricating the yaw system ring teeth | Do not perform this task if the wind turbine includes the automatic lubrication system for the ring and pinions of the Yaw System. Carry out, in its place, tasks 01.8 to 01.11 of the maintenance plan every 12 months | | 01.3 | Sliding element | Lubricating the sliding elements of the yaw system | Do not perform this task if the wind turbine includes the automatic lubrication system for the ring and pinions of the Yaw System. Carry out, in its place, tasks 01.8 to 01.11 of the maintenance plan every 12 months | | 01.4 | Sliding element | Visually inspecting wear dust of the
sliding elements and cleaning the
grease collection trays | In models with automatic lubrication | #### 02 NACELLE AND ROTOR THERMAL CONDITIONING SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|---------------------------------|--|--| | 02.1 | Nacelle cover - front air inlet | Replacing air inlet filters (front area) | Only for wind turbines with HD (high dust) configuration | | 02.2 | Nacelle cover - rear air inlet | Replacing air inlet filters (transformer area) | Only for wind turbines with HD (high dust) configuration | | 02.3 | Nacelle cover - side air inlet | Replacing air inlet filters (stator electrical cabinet area) | Only for wind turbines with HD (high dust) configuration | #### 08 GEARBOX SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--|------------------------| | 08.1 | Gearbox | Noise inspection | Only for the prototype | | 08.2 | Gearbox | Inspection for the absence of metal particles in the oil | Only for the prototype | | 08.3 | Gearbox - Oil | Sample taking | Only for the prototype | #### 15 GENERATOR SYSTEM Etude de dangers - Version finale - 21 mai 2021 Page 131 sur 145 #### Dossier de demande d'autorisation environnementale | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|------------------------------------|---|---| | 15.1 | Generator - Bearings | Lubricating the LA and LOA bearings rollers | Do not perform this task if the wind turbine includes the automatic lubrication system for the generator bearings | | 15.2 | Generator - Grease collection tray | Cleaning | | #### 20 BUILT-IN SYSTEMS | | Subsystem /
Component | Task title | Comments | |------|----------------------------------|-----------------|----------| | 20.1 | Predictive Maintenance
System | Data collection | | #### 31 WIND TURBINE | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|------------------------| | 31.1 | | Checking the operation of the
emergency shutdown push-buttons of
the nacelle | Only for the prototype | #### II MAINTENANCE PLAN EVERY 12 MONTHS NOTE The maintenance tasks defined below are to be performed every 12 months. #### 01 YAW SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--|--|----------------------------------| | 01.1 | Clamp | Visually inspecting the bolted joints
between the clamps and the frame | | | 01.2 | Clamp | Readjusting the passive actuators of
yaw system | | | 01.3 | Ring - Base | Visually inspecting the bolted joint between the ring base and the tower | | | 01.4 | Gear motor | Visually inspecting oil leaks | | | 01.5 | Gear motor | Visually inspecting the bolted joints | | | 01.6 | Position control unit -
Yaw sensor | Visually inspecting the yaw sensor | | | 01.7 | Automatic lubrication
system: ring and
pinions of the yaw
system - Grease tubes | Checking the absence of loose tube | Optional according to the client | | 01.8 | Automatic lubrication
system: ring and
pinions of the yaw
system - Pump - Tank | Grease refill | Optional according to the client | | 01.9 | Automatic lubrication
system: ring and
pinions of the yaw
system - Complete
system | Checking operation after refill | Optional according to the client | | 01.10 | Automatic lubrication
system: ring and
pinions of the yaw
system - Complete
system | Checking the absence of leaks in tubes, connections and lubrication points | Optional according to the client | | 01.11 | Automatic lubrication
system: yaw system
sliding elements -
Grease tubes | Checking the absence of loose tube | Optional according to the client | | 01.12 | Automatic lubrication
system: yaw system
sliding elements - Pump
- Tank | Grease refill | Optional according to the client | | 01.13 | Automatic lubrication
system: yaw system
sliding elements -
Complete system | Checking operation after refill | Optional according to the client | | | Automatic lubrication
system: yaw system
sliding elements -
Complete system | Checking the absence of leaks in tubes, connections and lubrication points | Optional according to the client | |--|--|--|----------------------------------| | | | Visually inspecting wear dust of the
sliding elements and cleaning the
grease collection trays | | #### 02 NACELLE AND ROTOR THERMAL CONDITIONING SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--|---|---| | 02.1 | Conditioning and air distribution system | Visually inspecting the fastening
elements of the heaters in the yaw
system and front frame area | Only for low-temperature wind turbine versions | | 02.2 | Conditioning and air distribution system | Visually inspecting the fastening elements of heaters in the nacelle | Only for low-temperature wind turbine versions | | 02.3 | Conditioning and air distribution system | Visually inspecting the fastening
elements of the heaters in the front
frame area | Only for wind turbines with VHC
(very high corrosion)/nearshore
configuration | | 02.4 | Conditioning and air distribution system | Visually inspecting the fastening
elements on the heaters in the nacelle
and in the transformer compartment | Only for wind turbines with VHC
(very high corrosion)/nearshore
configuration | | 02.5 | Nacelle cover - front air inlet | Replacing air inlet filters (front area) | Only for wind turbines with VHC (very high corrosion)/nearshore configuration | | 02.6 | Nacelle cover - rear air inlet | Replacing air inlet filters (transformer area) | Only for wind turbines with VHC
(very high corrosion)/nearshore
configuration | | 02.7 | Nacelle cover - side air inlet | Replacing air inlet filters (stator electrical cabinet area) | Only for wind turbines with VHC
(very high corrosion)/nearshore
configuration | #### 03 BLADES | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------------------------------| | 03.1 | Blade system | Noise inspection of the blades | Mechanical and aerodynamic noise | | 03.2 | Structure | Visually inspecting the blades | | | 03.3 | Joint - Bolted joint | Visually inspecting between the blade and blade bearing | | | 03.4 |
De-icing system | Visual inspection | Optional according to the client | | 03.5 | De-icing system | Visually inspecting the bolted joints of the de-icing system - blade | Optional according to the client | | 03.6 | De-icing system | Visually inspecting the bolted joints of the hub control electrical cabinet | Optional according to the client | #### 04 HYDRAULIC SYSTEM AND PITCH CONTROL Etude de dangers - Version finale - 21 mai 2021 | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|---|--|----------| | 04.1 | Pitch control system -
Cylinders | Noise inspection for gaps in the
supports of the pitch control system
cylinders | | | 04.2 | Hydraulic unit - Manifold
block | Inspecting and adjustment of the reducing valve of the yaw system brake (Pos. 110) | | | 04.3 | Hydraulic unit - Manifold
block | Inspecting and adjusting the mechanical brake's pressure relief valve (Pos.33) | | | 04.4 | Hydraulic unit - Manifold
block | Inspecting and adjusting the pressure
limiting valve of the pitch control
system brake (Pos. 25) | | | 04.5 | Nacelle hydraulic circuit
- Yaw system brake
hydraulic circuit | Visually inspecting for leaks | | | 04.6 | Nacelle hydraulic circuit
- Mechanical brake
hydraulic circuit | Visually inspecting for leaks | | | 04.7 | Hydraulic unit -
Yaw system brake
accumulator | Verification of the precharge pressure and adjustment | | | 04.8 | Hydraulic unit -
Mechanical brake
accumulator | Verification of the precharge pressure and adjustment | | | 04.9 | Hydraulic unit -
Pressure accumulators | Verification of the precharge pressure
and adjustment | | | 04.10 | Nacelle hydraulic circuit | Visually inspecting for leaks | | | 04.11 | Pitch control system -
Hydraulic circuit in rotor | Inspection of condition of hoses | | | 04.12 | Nacelle hydraulic circuit | Inspection of condition of hoses | | | 04.13 | Pitch control system -
Hydraulic rotary joint | Visually inspecting for leaks | | | 04.14 | Pitch control system -
Hydraulic circuit in rotor | Visually inspecting for leaks | | | 04.15 | Hydraulic unit - Oil filter | Filter cartridge replacement | | | 04.16 | Pitch control system -
Filtering system | Replacing the filter cartridge of the hub | | | 04.17 | Thermal conditioning
system | Visually inspecting and cleaning (as required) the intercooler | | | 04.18 | Pitch control system - Solenoid valve for
the hydraulic cylinder
manifold block | Checking operation | | | 04.19 | Pitch control system -
Pressure switch | Verifying and adjusting the pressure switch (Pos. 98) | | | 04.20 | Pitch control system -
Hydraulic cylinder fork | Visually inspecting the bolted joints of
the cylinder ball joint housings | | |-------|---|---|---| | 04.21 | Pitch control system - Hydraulic cylinder bracket | Visually inspecting the bolted joint
between the hydraulic cylinder bracket
parts and the hub | | | 04.22 | Hydraulic unit - Oil | Visually inspecting the oil level | Refilling as pending corrective action | | 04.23 | Hydraulic unit - Air filter | Visual inspection and replacement (as required) | Replacement after visual inspection, depending on the condition | | 04.24 | Pitch control system -
Emergency accumulator
supports | Visually inspecting the support - hub bolted joints | | | 04.25 | Pitch control system -
Emergency accumulator
supports | Inspecting the accumulators-support bolted joints | | | 04.26 | Pitch control system -
Emergency accumulator
supports | Visually inspecting the condition of
the support of the accumulators and
cabinet | | | 04.27 | Pitch control system -
Distributor block | Inspecting the bolted joints fastening
the pitch control system distributor
block | | | 04.28 | Pitch control system - Pitch control system block | Inspecting the bolted joints fastening
the cylinder manifold blocks of the
pitch control system | | #### 05 FRAME SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 05.1 | Frame system | Visual inspection | | | 05.2 | Frame system | Visual inspection | | | 05.3 | Frame system | Visually inspecting the bolted joints between the front and rear frames | | #### 06 HUB SYSTEM | Cl
te | | Subsystem /
Component | Task title | Comments | |----------|----|--------------------------|-------------------|----------| | 06 | .1 | Hub | Visual inspection | | #### 07 HIGH SPEED SHAFT COUPLING SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|---------------------------------------|----------| | 07.1 | Coupling | Visually inspecting the bolted joints | | | 07.2 | Coupling | Visual inspection | | | 07.3 | Mechanical brake | Bleeding the hydraulic circuit | | #### Dossier de demande d'autorisation environnementale | 07.4 | Mechanical brake -
Brake pad | Inspection and replacement | | |------|---------------------------------|---|--| | 07.5 | Gearbox - Mechanical
brake | Visually inspecting the bolted joints of the mechanical brake support | | | 07.6 | Mechanical brake -
Clamps | Visually inspecting the mechanical brake clamps | | #### 08 GEARBOX SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--|---|--| | 08.1 | Gearbox | Noise inspection | | | 08.2 | Gearbox | Inspection for the absence of metal particles in the oil | | | 08.3 | Gearbox - Oil | Sample taking | | | 08.4 | Gearbox | Visually inspecting the structure | | | 08.5 | Lubrication system -
Hoses | Visual inspection | | | 08.6 | Cooling system | Inspection for leaks | | | 08.7 | Gearbox - Oil filter | Replacement | Do not perform this task when the oil
will be changed in the next 3 months
or the oil has been changed in the last
3 months | | 08.8 | Gearbox - off-line oil
filtering system | Replacement | Do not perform this task when the oil
will be changed in the next 3 months
or the oil has been changed in the last
3 months | | 08.9 | Cooling system -
Intercooler | Visually inspecting and cleaning (as required) | | | 08.10 | Gearbox - Torque arm | Visually inspecting the bolted joints between the torque arms and the gearbox | | | 08.11 | Gearbox - Oil | Level inspection | | | 08.12 | Gearbox - Torque arm | Inspecting the condition of gaps in the damper packages | | | 08.13 | Gearbox - Air filter | Inspection and replacement | | #### 09 MAIN SHAFT SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|-------------------------------------|--|----------| | 09.1 | Main shaft system | Visually inspecting for grease leaks in the main shaft bearings | | | 09.2 | Main shaft - Grease collection tray | Cleaning the grease collection trays of
the main shaft bearings | | | 09.3 | Main shaft - Bearings | Lubrication of the main bearings with
automatic refill system | | |-------|--|--|--| | 09.4 | Main shaft - Bearings | Manual lubrication of the main bearings | | | 09.5 | Main shaft | Visually inspecting the bolted joints between the hub and the main shaft | | | 09.6 | Main shaft | Visually inspecting the bolted joints between the main shaft housings and the frame | | | 09.7 | Main shaft | Visually inspecting the structure and the rotor lock disc | | | 09.8 | Main shaft - Coupling
flange - Bolted joint | Visually inspecting the bolted joints
between the coupling flange and the
main shaft | | | 09.9 | Main shaft - Coupling
flange - Bolted joint | Visually inspecting the bolted joints between the coupling flange and the gearbox | | | 09.10 | Main shaft | Visually inspecting the bolted joints
between the main shaft and the lock
system ring | | | 09.11 | Main shaft | Visually inspecting the bolted joints
between the main shaft and the lock
system ring | | | 09.12 | Main shaft | Main shaft system - Rotor lock system - Visually inspecting the bolted joint between the rotor lock system and the front bearing housing | | | 09.13 | Main shaft | Visually inspecting the bolted joint between the stiffeners and the bearing housings | | #### 10 BLADE BEARING SYSTEM | Subsystem /
Component | Task title | Comments | |---------------------------------------|--|---| | Lubrication system | Visually
inspecting for grease leaks in
the lubricators and the blade bearing
drainage holes | | | Blade bearing unit -
Blade bearing | Visually inspecting the condition of the lower retainer of the blade bearings | | | Blade bearing unit | Visually inspecting the condition of the outer retainer of the blade bearings | | | Blade bearing system | Blade bearing manual lubrication | Do not perform this task if the wind
turbine includes the automatic lubrica-
tion system for the blade bearings. Ins-
tead perform tasks 10.8 to 10.15 | | Blade bearing system | Manual lubrication of the blade bearing
with semi-automatic system | | | Blade bearing unit | Visually inspecting the bolted joints of the hub | | | | Component Lubrication system Blade bearing unit - Blade bearing unit Blade bearing unit Blade bearing system Blade bearing system | Lubrication system Visually inspecting for grease leaks in the lubricators and the blade bearing drainage holes Blade bearing unit - Blade bearing unit Blade bearing unit Visually inspecting the condition of the lower retainer of the blade bearings Visually inspecting the condition of the outer retainer of the blade bearings Blade bearing system Blade bearing system Manual lubrication of the blade bearing with semi-automatic system Visually inspecting the bolted joints of | | 10.7 | Blade lock | Visually inspecting the bolted joints of
the blade lock systems | | |-------|--|--|----------------------------------| | 10.8 | Inner blade access cover | Visually inspecting the blade root access cover and the seal | | | 10.9 | Automatic lubrication
system: blade bearings
- Pump - Tank | Checking the absence of cracks in the grease tank | Optional according to the client | | 10.10 | Automatic lubrication
system: Blade bearing
- Grease collection
containers | Checking the correct placement and drainage | Optional according to the client | | 10.11 | Automatic lubrication
system: blade bearings
- Grease tubes | Checking the absence of loose tube | Optional according to the client | | 10.12 | Automatic lubrication
system: blade bearing -
Pump system - Tank | Refilling grease and verifying the operation after refilling | Optional according to the client | | 10.13 | Automatic lubrication
system: blade bearing -
Complete system | Checking the absence of leaks in tubes, connections and lubrication points | Optional according to the client | | 10.14 | Automatic lubrication
system: blade bearing -
Pump - Support bolted
joints | Visual inspection | Optional according to the client | | 10.15 | Automatic lubrication
system: blade bearing
- Primary distributor -
support bolted joints | Visual inspection | Optional according to the client | | 10.16 | Automatic lubrication
system: Blade bearings
- Bolted joints of the
support - blade bearing | Visual inspection | Optional according to the client | #### 11 WIND TURBINE INSTRUMENTATION SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 11.1 | | Checking the functioning of the
vibration sensor | | #### 12 TOWER SYSTEM #### METAL TOWER | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--|--|----------| | 12.1 | Tower - Structure -
Metal joint structure | Visually inspecting the flange - ring welding | | | 12.2 | Tower - Structure -
Metal joint structure | Visually inspecting the bolted joints between sections | | | 12.3 | Foundation - Metal foundation ring | Visually inspecting the flange | | |------|--|---|---| | 12.4 | Foundation | Visually inspecting the bolted joints
between the foundation and lower
section | | | 12.5 | Foundation - Pedestal | Visual inspection | | | 12.6 | Foundation | Inspection of gaps between the foundation section and the pedestal | | | 12.7 | Foundation - Concrete tower | Inspecting the pre-stressed tendons | For towers of one or more concrete sections | | 12.8 | Tower – Structure –
Metal joint structure | Visually inspecting the bolted joints between the sections of a section (if applicable) | Only for towers with vertical bolted joints in the sections | | 12.9 | Internal element -
Lifeline | Prescribed inspection | Perform only by authorized personnel
according to what is indicated by the
supplier and current legislation | #### 13 NACELLE COVER AND CONE SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|------------------------| | 13.1 | Cone unit | Visually inspecting the weld of the
metal structure of the support cone | Only for the prototype | | 13.2 | Cone unit | Visually inspecting the metal structure of the cone support | | | 13.3 | Nacelle cover | Visual inspection (outside the transformer compartment) | | | 13.4 | Nacelle cover | Visual inspection (inside the transformer compartment) | | | 13.5 | Nacelle cover | Visually inspecting the fireproof fabrics (inside the transformer compartment) | | | 13.6 | Cone unit | Visually inspecting the cone's fiber panels | | | 13.7 | Cone unit | Visually inspecting the bolted joints
between the ring support structure and
the cone fiber | | | 13.8 | Cone unit | Visually inspecting the bolted joints of
the base plates of the cone support
beams | | | 13.9 | Cone unit | Visually inspecting the bolted joints
between the rear supports and the
cone fiber | | | 13.10 | Cone unit | Visually inspecting the bolted joints
between the cone support structure
and the support ring | | | 13.11 | Cone unit | Visually inspecting the bolted joints
between the cone support ring and the
fiber | | #### Dossier de demande d'autorisation environnementale | 13.12 | Nacelle cover | Visually inspecting the bolted joints
between the fixed rafters and the fiber
panels in the non-folding areas of the
nacelle roof | | |-------|--------------------------------|--|--| | 13.13 | Nacelle cover | Visually inspecting the bolted joints
between the gutter ring and the front
fiber panels of the nacelle cover | | | 13.14 | Nacelle cover | Visually inspecting the bolted joints of the fixed and folding rafters to the bridge crane structure | | | 13.15 | Nacelle cover | Visually inspecting the bolted joints
between the side and rear cover
supports and the nacelle structure | | | 13.16 | Nacelle cover | Visually inspecting the bolted joints
between the rear nacelle cover
supports and the frame | | | 13.17 | Nacelle cover - Tower retainer | Visually inspecting the tower retainer | | #### 14 LOAD HOIST SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 14.1 | Fixed hoist system | Visually inspecting the upper and lower
bolted joints on the pillars of the bridge
crane structure | | | 14.2 | Fixed hoist system | Visually inspecting the bolted joint
between the support structure of the
generator and converter intercoolers
and the nacelle structure | | | 14.3 | Fixed hoist system | Visually inspecting the internal bolted
joints of the structure of the generator
and converter intercoolers | | #### 15 GENERATOR SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|---|---|----------------------------------| | 15.1 | Generator | Visually inspecting the bolted joints to the frame | | | 15.2 | Generator - Electrical element | Inspection of the inside of the stator terminal box | | | 15.3 | Automatic lubrication
system: generator
bearings - Grease tubes | Checking the absence of loose tube | Optional according to the client | | 15.4 | Automatic lubrication
system: generator
bearings - Pump - Tank | Grease refill | Optional according to the client | | 15.5 | Automatic lubrication
system: generator
bearings - Complete
system | Checking operation after refill | Optional according to the client | |-------|---|--|--| | 15.6 | Automatic lubrication
system: generator
bearings - Complete
system | Checking the absence of leaks in tubes, connections and lubrication points | Optional according to the client | | 15.7 | Generator - Bearings | Lubricating the DE ball bearing | | | 15.8 | Generator - Brush | Checking wear and seat of phase brushes | | | 15.9 | Generator - Brush | Checking wear and seat of ground brushes | | | 15.10 | Generator - Ring body | Cleaning and measuring insulation | Perform the ring body cleaning task
before
the annual frequency if the
production accumulated since the last
ring cleaning exceeds the following
values:
• SG4.5 MW: 22 GWh/year
• SG5.0 MW: 24.3 GWh/year | #### 18 TRANSFORMER SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|------------------------------------|---|----------| | 18.1 | Transformer | Visually inspecting the neutral cable ground connection | | | 18.2 | Transformer - Electrical safeguard | Visually inspecting surge arrester connections | | | 18.3 | Transformer - Neutral relay | Checking the switchgear trip | | | 18.4 | Transformer – Arc
protector | Checking the operation of the arc sensor | | | 18.5 | Wall - Lock system | Checking of transformer access door microswitches operation | | | 18.6 | Transformer | Cleaning | | | 18.7 | Transformer | Visually inspecting low-voltage cables, terminals and fuses | | | 18.8 | Transformer | Visually inspecting the high-voltage delta connection and terminals | | | 18.9 | Transformer - Structure | Visually inspecting the bolted joints between the transformer and the support | | | 18.10 | Transformer - Structure | Visually inspecting the upper fastening bolted joints of the transformer | | | 18.11 | Transformer | Visually inspecting the coil support blocks | | | 18.12 | Transformer | Visually inspecting the bolted joints of
the fuses and the low-voltage plates
of the transformer | | |-------|-------------|--|--| | 18.13 | Transformer | Visually inspecting the bolted joints
between the neutral plate and the
low-voltage plates of the transformer | | | 18.14 | Transformer | Visually inspecting the bolted joints fastening the neutral cable of the transformer to the ground plate and to the neutral plate | | | 18.15 | Transformer | Visually inspecting the bolted joints fastening the low-voltage braids to the transformer and to the fuse plates | | | 18.16 | Transformer | Visually inspecting the bolted joints fastening the high-voltage terminals of the transformer | | | 18.17 | Transformer | Visually inspecting the bolted joints fastening the transformer surge arresters | | | 18.18 | Transformer | Visually inspecting the bolted joints fastening the groundings of the high-voltage cable to the ground plate | | | 18.19 | Transformer | Visually inspecting the bolted joints
fastening the high-voltage delta
busbars of the transformer | | | 18.20 | Transformer | Visually inspecting the bolted joints fastening the ground cable between the transformer support beam and the ground plate | | | 18.21 | Transformer | Visually inspecting the bolted joints
fastening the ground cables to the
vertical ground plate inside the
transformer compartment | | | 18.22 | Transformer | Visually inspecting the bolted joint fastening the FG001N cable to the transformer neutral plate | | | 18.23 | Transformer | Visually inspecting the bolted joint fastening the grounding cable of the stator electrical cabinet to the ground plate | | #### 19 ELECTRICAL CABINET SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|-------------------------------|--|----------| | 19.1 | Tower base electrical cabinet | Air filter replacement | | | 19.2 | Tower base electrical cabinet | Checking operation of differentials (sockets and lights) | | | | | <u> </u> | | |-------|---|--|--| | 19.3 | Tower base electrical
cabinet | Cleaning | | | 19.4 | Nacelle control electrical
cabinet | Air filter replacement | | | 19.5 | Nacelle control electrical
cabinet | Cleaning | | | 19.6 | Nacelle control electrical
cabinet | Checking operation of differentials (sockets and lights) | | | 19.7 | Hub control electrical cabinet | Air filter replacement | | | 19.8 | Hub control electrical cabinet | Cleaning | | | 19.9 | Converter electrical cabinet | Air filter replacement | | | 19.10 | Converter electrical cabinet | Cleaning | | | 19.11 | Stator module electrical cabinet | Air filter replacement | | | 19.12 | Stator module electrical cabinet | Cleaning | | | 19.13 | Electrical cabinet
converter - Cooling
system | Inspection of the hoses | | | 19.14 | Electrical cabinet
converter - Cooling
system | Inspecting for leaks from the cooling circuit | | | 19.15 | Electrical cabinet
converter - Cooling
system | Inspecting and cleaning (as required) the intercooler | | | 19.16 | Hub control electrical cabinet | Visually inspecting the HUB control electrical cabinet - support bolted joints | | | 19.17 | Stator module electrical
cabinet - Circuit Breaker | Checking opening or closing maneuvers of circuit breaker FG008 | | | 19.18 | Auxiliary transformer | Visually inspecting the bolted joints (electrical and mechanical) of the auxiliary transformer | | | 19.19 | Hub electrical cabinet | Visually inspecting the bolted joints
between the HUB electrical cabinet and
the accumulator structure | | #### 20 BUILT-IN SYSTEMS | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|-------------------------------------|---------------------------------------|----------------------------------| | 20.1 | Overspeed guard
system | Checking the operation of the relay | | | 20.2 | Active fire extinguishing
system | Checking extinguisher cylinder charge | Optional according to the client | | 20.3 | Active fire extinguishing
system | Visually inspecting the proper service condition | Optional according to the client | |-------|-------------------------------------|---|----------------------------------| | 20.4 | Active fire extinguishing
system | Checking the system operations in automatic mode | Optional according to the client | | 20.5 | Active fire extinguishing
system | Visually inspecting the conservation condition of the system elements | Optional according to the client | | 20.6 | Active fire extinguishing
system | Visually inspecting the integrity of the extinguishing circuits | Optional according to the client | | 20.7 | Active fire extinguishing
system | Visually inspecting the integrity of the intake circuits | Optional according to the client | | 20.8 | Active fire extinguishing
system | Cleaning the filters in ASD detectors | Optional according to the client | | 20.9 | system | Downloading the record of events in ASD detectors | Optional according to the client | | 20.10 | Active fire extinguishing
system | Integral operation test | Optional according to the client | #### 26 COMPLETE NACELLE WIRING | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|----------------------------------|--------------------------------------|----------| | 26.1 | Electrical equipment -
Wiring | Visually inspecting the power wiring | | #### 31 WIND TURBINE | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|--| | 31.1 | Safety element | Checking the operation of the
emergency shutdown push-buttons of
the nacelle | | | 31.2 | Safety element | Checking the operation of the Ground
emergency disconnection push-button
(switchgear trip) | | | 31.3 | Safety element | Checking the operation of the
emergency disconnection push-buttons
in the nacelle (switchgear trip) | | | 31.4 | Wind turbine | Cleaning | | | 31.5 | Safety element | Visually inspecting the safety signs | | | 31.6 | Safety element | Checking the operation of safety relay KR901 | | | 31.7 | Safety element | Visually inspecting the safety eyebolt of the emergency descent device | | | 31.8 | Safety element | Inspecting the fire extinguishers | Only the authorized company can
perform these tasks | | 31.9 | Safety element | Inspecting the condition of the container with the descent device | | | 31.10 | Safety element | Check of the last inspection date of the
emergency descent device | | |-------|----------------|---|--| | 31.11 | Safety element | Inspecting the overvoltage dischargers in tower base electrical cabinet | | | 31.12 | Safety element | Inspecting the condition of the non-slip tape | | #### 36 BEACON SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--------------------|----------| | 36.1 | Beacons | Checking operation | | #### 37 LIGHTNING TRANSMISSION SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|-----------------------------|---|----------| | 37.1 | Lightning transmission unit | Visual inspection | | | 37.2 | Lightning transmission unit | Visually inspecting the bolted joints
fastening the lightning transmission
system | | | 37.3 | Grounding connection | Visually inspecting the grounding cables between tower sections | | | 37.4 | Grounding connection | Visually inspecting the transformer grounding cable | | | 37.5 | Grounding connection | Visually inspecting the high-voltage
switchgear grounding cable | | | 37.6 | Grounding connection | Visually inspecting the foundation grounding cables | | | 37.7 | Lightning transmission unit | Measuring blade conductivity | | Etude de dangers - Version finale - 21 mai 2021 Page 138 sur 145 #### Dossier de demande d'autorisation
environnementale #### III MAINTENANCE PLAN EVERY 18 MONTHS The maintenance tasks defined below must be performed every 18 months. #### 15 GENERATOR SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|----------------------------------|----------| | 15.1 | Generator - Bearings | Lubricating the LA ball bearings | | #### **IV MAINTENANCE PLAN EVERY 24 MONTHS** NOTE: The maintenance tasks defined below are to be performed every 24 months. #### 01 YAW SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|----------------------------------|----------| | 01.1 | Gear motor - Oil | Inspecting gear motor oil levels | | #### 04 HYDRAULIC SYSTEM AND PITCH CONTROL | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|-------------------------------------|--|----------| | 04.1 | | Inspecting and adjustment of the reducing valve of the yaw system brake (Pos. 110) | | | 04.2 | Hydraulic unit -
pressure switch | Checking and adjusting the mechanical brake pressure switch (Pos.31) | | #### 05 FRAME SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 05.1 | | Visually inspecting the bolted joints
between the rear beams of the rear
frame and the longitudinal beams | | #### 11 WIND TURBINE INSTRUMENTATION SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|------------------------------------|---------------------------------|----------| | 11.1 | Operating sensor -
Smoke sensor | Checking smoke sensor operation | | #### 12 TOWER SYSTEM #### **METAL TOWER** | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|------------------------------------|--------------------------------------|----------| | 12.1 | Internal element - Light | Checking the operation of the lights | | | 12.2 | Tower - Structure -
Access door | Visual inspection | | #### 13 NACELLE COVER AND CONE SYSTEM Etude de dangers - Version finale - 21 mai 2021 #### Dossier de demande d'autorisation environnementale | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 13.1 | Nacelle cover | Visually inspecting the bolted joints
between the split rafters of the nacelle
roof folding gates | | | 13.2 | Nacelle cover | Visually inspecting the bolted joints
between the L-shaped profiles of the
nacelle roof folding gates | | | 13.3 | Nacelle cover | Visually inspecting the bolted joints
between the rear nacelle cover and the
frame | | | 13.4 | Nacelle cover | Visually inspecting the side bolted
joints between the nacelle cover and
the frame | | | 13.5 | Nacelle cover | Visually inspecting the lower bolted
joints between the nacelle cover and
the frame | | #### 15 GENERATOR SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|----------| | 15.1 | Generator - Mount | Visually inspecting the bolted joints between the generator and its mount | | | 15.2 | Generator - Mount | Visually inspecting the bolted joints between the generator mounts and the frame | | #### 18 TRANSFORMER SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--|----------| | 18.1 | Transformer - Fuse | Checking of fuse microswitch operation | | #### 19 ELECTRICAL CABINET SYSTEM | Subsystem /
Component | Task title | Comments | |---------------------------|--|--------------------| | cabinet - Circuit Breaker | Lubrication of the opening and closing
mechanism of the FG008 circuit
breaker switch | Only for FG008 ABB | #### 36 BEACON SYSTEM | | Subsystem /
Component | Task title | Comments | |--|--|--------------------|-------------------------------------| | | Uninterruptible power supply for beacons (UPS) | Checking operation | Only for wind farms with beacon UPS | #### V MAINTENANCE PLAN EVERY 48 MONTHS The maintenance tasks defined below are to be performed every 48 months. #### 03 BLADES | | Subsystem /
Component | Task title | Comments | |------|--------------------------|-------------------|----------| | 03.1 | Blade root | Visual inspection | | #### 10 BLADE BEARING SYSTEM | | Subsystem /
Component | Task title | Comments | |------|-------------------------------------|---|----------| | 10.1 | Blade bearing unit -
Blade plate | Visually inspecting the bolted joints between the pin support and the blade plate | | Etude de dangers - Version finale - 21 mai 2021 Page 140 sur 145 #### Dossier de demande d'autorisation environnementale #### VI MAINTENANCE PLAN EVERY 60 MONTHS NOTE: The maintenance tasks defined below are to be performed every 60 months. #### 03 BLADES | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|---------------------------------------| | 03.1 | Joint - Bolted joint | Visually inspecting and inspecting the
tightening torque of the nut of the
bolt that joins the lightning protection
system to the blade root band | The tightening torque must be 50±5 Nm | | 03.2 | Blade root | Visual inspection | After the tenth year: annually | #### 04 HYDRAULIC SYSTEM AND PITCH CONTROL | Chap
ter | Subsystem /
Component | Task title | Comments | |-------------|--------------------------|------------|--| | 04.1 | Hydraulic unit | | Take the first sample starting from the 5th year, included | #### 08 GEARBOX SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---------------------------|----------| | 08.1 | Gearbox - Oil | Synthetic oil replacement | | #### 31 WIND TURBINE | | Subsystem /
Component | Task title | Comments | |------|--------------------------|------------|---| | 31.1 | Safety element | | Only the authorized company can perform these tasks | #### VIII MAINTENANCE PLAN EVERY 96 MONTHS The maintenance tasks defined below are to be performed every 96 months. #### 31 WIND TURBINE | | Subsystem /
Component | Task title | Comments | |------|--------------------------|---|--| | 31.1 | Safety element | Replacing the ropes on the descent device | Only to be performed by a certified entity | #### VII MAINTENANCE PLAN EVERY 72 MONTHS NOTE: The maintenance tasks defined below are to be performed every 72 months. #### 31 WIND TURBINE | | Subsystem /
Component | Task title | Comments | |------|--------------------------|---|---------------------------------| | 31.1 | | Applying anti-corrosion protection to bolted joints | For NearShore/VHC wind turbines | #### IX MAINTENANCE PLAN EVERY 120 MONTHS The maintenance tasks defined below are to be performed every 120 months. #### 08 GEARBOX SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|------------|--| | 08.1 | Gearbox - Oil | | Replacement every 5, 7 or 10 years according to oil supplier indications | #### X MAINTENANCE PLAN AFTER 3 MONTHS FROM STARTUP #### 15 GENERATOR SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|--|----------| | 15.1 | Generator - Brush | Checking wear and seat of phase brushes | | | 15.2 | Generator - Brush | Checking wear and seat of ground brushes | | #### 20 BUILT-IN SYSTEMS | | Subsystem /
Component | Task title | Comments | |------|----------------------------------|-----------------|----------| | 20.1 | Predictive Maintenance
System | Data collection | | #### 31 WIND TURBINE | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--|----------| | 31.1 | Wind turbine | Maintenance of structural and electrical bolted joints | | #### XI MAINTENANCE PLAN AFTER A STORM #### NOTE The maintenance tasks defined below are to be performed after each storm #### 03 BLADES | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--------------------------------|----------| | 03.1 | Blade system | Noise inspection of the blades | | #### 36 BEACON SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--------------------|----------| | 36.1 | Beacons | Checking operation | | #### Dossier de demande d'autorisation environnementale #### XII MAINTENANCE PLAN IF THE CLOGGED FILTER SIGNAL APPEARS The maintenance tasks defined below are to be performed if the filter sensor signal appears clogged #### 08 GEARBOX SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--|-------------
---| | 08.1 | Gearbox - Oil filter | Replacement | Do not perform this task when the oil will be changed in the next 3 months or the oil has been changed in the last 3 months | | 08.2 | Gearbox - <i>off-line</i> oil filtering system | Replacement | Do not perform this task when the oil will be changed in the next 3 months or the oil has been changed in the last 3 months | #### XIII MAINTENANCE PLAN AFTER EACH USE The maintenance tasks defined below are to be performed after each use #### 12 TOWER SYSTEM #### METAL TOWER | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|------------------------------------|--|----------| | 12.1 | Tower - Structure -
Access door | Inspecting the retention system of the tower access door | | | 12.2 | Internal element -
Lifeline | Verifying the last inspection date of the lifeline | | #### 12 TOWER SYSTEM #### **ELEVATORS** | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|---| | | Elevator | Inspecting and checking the operation of the elevator | Check the manufacturer and model
of the elevator on the nameplate | | 12.1 | | | Perform the inspections and checks
prior to using the elevator according to
the manual of the corresponding model | #### 13 NACELLE COVER AND CONE SYSTEM | | Subsystem /
Component | Task title | Comments | |------|--------------------------|--|----------| | 13.1 | | Visually inspecting the bolted joints
between the anchor points and nacelle
roof | | #### 14 LOAD HOIST SYSTEM | | Subsystem /
Component | Task title | Comments | |------|---|--|---| | | Fixed hoist system -
Hoist component | Inspecting and checking the operation of the hoist | Check the manufacturer and model
of the hoist on the nameplate | | 14.1 | | | Perform the inspections and checks
prior to using the elevator according to
the manual of the corresponding model | #### XIV MAINTENANCE PLAN EVERY TIME THE WIND TURBINE IS ACCESSED NOTE: The maintenance tasks defined below are to be carried out whenever accessing the wind turbine #### 31 WIND TURBINE | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|----------| | 31.1 | Safety element | Checking the condition and last inspection date of the extinguisher on the tower platform | | | 31.2 | Safety element | Checking the condition and last inspection date of the nacelle extinguisher | | #### XV MAINTENANCE PLAN ACCORDING TO THE MANUFACTURER MANUAL The maintenance tasks defined below will be carried out according to the frequency established in the manufacturer manual #### 12 TOWER SYSTEM #### **ELEVATORS** | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|--------------------------|---|---| | 12.1 | Elevator | Inspections and periodic checks of the elevator | Check the manufacturer and model
of the elevator on the nameplate | | | | | Perform the inspections and checks
prior to using the elevator according to
the manual of the corresponding model | #### 14 LOAD HOIST SYSTEM | Chap-
ter | Subsystem /
Component | Task title | Comments | |--------------|---|--|---| | 14.1 | Fixed hoist system -
Hoist component | Periodic inspections and checks of the hoist | Check the manufacturer and model
of the hoist on the nameplate | | | | | Perform the inspections and checks
prior to using the elevator according to
the manual of the corresponding model | #### Dossier de demande d'autorisation environnementale #### 11.8 BIBLIOGRAPHIE ET RÉFÉRENCES UTILISÉES [1] L'évaluation des fréquences et des probabilités à partir des données de retour d'expérience (ref DRA-11-117406- 04648A), INERIS, 2011 - [2] NF EN 61400-1 Eoliennes Partie 1 : Exigences de conception, Juin 2006 - [3] Wind Turbine Accident data to 31 March 2011, Caithness Windfarm Information Forum - [4] Site Specific Hazard Assessment for a wind farm project Case study Germanischer Lloyd, Windtest Kaiser–Wilhelm– Koog GmbH, 2010/08/24 [5] Guide for Risk-Based Zoning of wind Turbines, Energy research centre of the Netherlands (ECN), H. Braam, G.J. van Mulekom, R.W. Smit, 2005 - [6] Specification of minimum distances, Dr-ing. Veenkeringenieurgesellschaft, 2004 - [7] Permitting setback requirements for wind turbine in California, California Energy Commission Public Interest Energy Research Program, 2006 - [8] Oméga 10 : Evaluation des barrières techniques de sécurité, INERIS, 2005 - [9] Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des installations classées pour la protection de l'environnement - [10] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation - [11] Circulaire du 10 mai 2010 récapitulant les règles méthodologiques applicables aux études de dangers, à l'appréciation de la démarche de réduction du risque à la source et aux plans de prévention des risques technologiques (PPRT) dans les installations classées en application de la loi du 30 Juillet 2003 - [12] Bilan des déplacements en Val-de-Marne, édition 2009, Conseil Général du Val-de-Marne - [13] Arrêté du 29 Septembre 2005 relatif à l'évaluation et à la prise en compte de la probabilité d'occurrence, de la cinétique, de l'intensité des effets et de la gravité des conséquences des accidents potentiels dans les études de dangers des installations classées soumises à autorisation - [14] Alpine test site Gütsch: monitoring of a wind turbine under icing conditions- R. Cattinetal. - [15] Wind energy production in cold climate (WECO), Final report Bengt Tammelin et al. Finnish Meteorological Institute, Helsinki, 2000 - [16] Rapport sur la sécurité des installations éoliennes, Conseil Général des Mines Guillet R., Leteurtrois J.-P. juillet 2004 - [17] Risk analysis of ice throw from wind turbines, Seifert H., Westerhellweg A., Kröning J. DEWI, avril 2003 - [18] Wind energy in the BSR: impacts and causes of icing on wind turbines, Narvik University College, novembre 2005 # Parc éolien LES MOULINS DU MONCHEL ## TOGLOBAL #### **RP Global France** 96 Rue Nationale 59000 Lille Tel: +33 (0)3 20 51 16 59 E-mail: contactfrance@rp-global.com www.rp-global.com ### RP Global France Antenne Bordeaux 1 Avenue Neil Armstrong BAT C - Clément Ader CS 10076 33700 Mérignac E-mail: contactfrance@rp-global.com www.rp-global.com